Kliknite na tento odkaz a vyplňte dotazník
Neskôr tu pribudne štatistické vyhodnotenie
Kliknite na tento odkaz a vyplňte dotazník
Neskôr tu pribudne štatistické vyhodnotenie
Ešte na základnej škole ste sa učili o podobnosti trojuholníkov.
Dva trojuholníky sú podobné ak platí:
Konštantu k nazývame koeficient podobnosti. Ak je k väčšie ako 1, trojuholník sme zväčšili, ak je menšie ako 1 zmenšili a ak je rovný 1, trojuholníky sú zhodné.
Učili ste sa tiež vetu UU.
Veta UU: Ak sú v dvoch trojuholníkoch dva uhly zhodné, potom sú trojuholníky podobné.
Zároveň vieme, že súčet vnútorných uhlov trojuholníka je .
Z uvedených znalostí možno odvodiť, že ak máme dva pravouhlé trojuholníky a jeden z ostrých uhlov jedného trojuholníka je zhodný s ostrým uhlom v druhom trojuholníku, potom sú trojuholníky podobné, pretože majú dva zhodné uhly.
Z toho vyplýva, že pomer strán pravouhlých trojuholníkov s rovnakými uhlami je rovnaký a môžeme zaviesť funkcie uhlov, ktoré budú odvodené z pomerov strán pravouhlého trojuholníka:
Na základnej škole ste veľkosť uhla merali v stupňoch, kde celý kruh mal 360 stupňov, pravý uhol mal 90 stupňov, rovnostranný trojuholník mal 60 stupňové uhly, …
Rozdelenie kruhu na 360 stupňov zaviedli už Babylončania. Vo fyzike sa ukázalo užitočné merať uhly v radiánoch.
Radián je uhol, ktorý s vrcholom v strede kružnice vytne na kružnici oblúk s dĺžkou rovnou dĺžke polomeru. Značka rad.
Obvod kruhu počítame podľa vzorca: , potom 360 stupňom zodpovedá
Stupne | Radiány |
0 | |
30 | |
45 | |
60 | |
90 | |
120 | |
180 | |
270 | |
360 |
Neraz sa stáva, že potrebujeme porovnať dva či viac objektov rovnakého druhu z hľadiska ich štruktúry, pričom objekty nie sú rovnako veľké. Majme dve školy, na jednu chodí 400 žiakov z toho 100 dievčat, na druhú 600 žiakov z toho 120 dievčat. Hoci na druhú školu chodí v absolútnej hodnote dievčat viac, relatívne ich tam chodí menej. Relatívny počet dievčat na oboch školách možno vyjadriť zlomkami:
a
Keď porovnávame relatívne počty, stalo sa zvykom, že relatívny počet prevedieme na zlomok s menovateľom 100 a aby sme nemuseli písať zlomok píšeme znak %.
Hore uvedené zlomky potom prejdú do tvaru a .
Znak % čítame ako percento, názov pochádza z latinského per cento znamenajúce na sto podobne ako jeden cent je stotina eura.
Hoci sa Pascalov trojuholník nazýva podľa matematika Blaise Pascala, neobjavil ho on, ale poznali ho už v 13. storočí čínski matematici. Pascal však tento trojuholník a vzťahy ktoré v ňom platia preštudoval do hĺbky a tak bol pomenovaný po ňom.
Ako vytvoríme Pascalov trojuholník?
Do nultého riadku napíšeme 1, do prvého dve jednotky tak, že jednotka z predchádzajúceho riadku je v strede medzi nimi. Na začiatok a koniec každého ďalšieho riadku napíšeme jednotku a na ostatné pozície napíšeme súčet čísel, ktoré sú nad ním vľavo a vpravo. Tak ako ukazuje animovaný obrázok:
Možno dokázať, že jednotlivé čísla Pascalovho trojuholníka zodpovedajú kombinačným číslam.
n | ||||||||||||
0 | ||||||||||||
n=1 | ||||||||||||
n=2 | ||||||||||||
n=3 | ||||||||||||
n=4 | ||||||||||||
n=5 |
Vlastnosti Pascalovho trojuholníka
Počet kombinácií bez opakovania sme vyjadrili vzorcom:
Kombinačné číslo zapisujeme ako , čítame ako n nad k a jeho hodnotu vypočítame rovnako ako počet kombinácií bez opakovania:
Kombinačné čísla sa vyskytujú nielen v kombinatorike, ale aj pri iných matematických úlohách. Napríklad koeficienty pri rozpísaní mocniny usporiadané zostupne podľa exponentov pri a.