december 2019

Zákon sily

Zo skúsenosti vieme, že:

  • oveľa ľahšie roztlačíme vozík s malým dieťaťom než rovnaký vozík s ťažkým chlapom
  • ak sa rovnakou rýchlosťou pohybuje vozík s malým dieťaťom a s ťažkým chlapom, vozīk s dieťaťom zastavīme výrazne ľahšie

Pokus: K prázdnemu a naloženému vozíku priviažeme špagáty, tie vedieme cez kladky a na druhý koniec špagátov priviažeme rovnaké závažia. Prázdny vozík bude mať väčšie zrýchlenie než plný, pričom na oba vozíky pôsobila rovnaká sila.

Na základe podobných pokusov môžeme odvodiť zákon sily.

Zákon sily (2. Newtonov pohybový zákon): Zrýchlenie telesa v inerciálnej vzťažnej sústave je priamo úmernė sile, ktorá naň pôsobī a nepriamo úmerné hmotnosti telesa.

Continue reading

Zákon zotrvačnosti

Každodenne sa stretåvame s takýmito a podobnými javmi:

  • ak cestujeme mestskou hromadnou dopravou a šofér prudko akceleruje, ak sa nedržíme, môžeme spadnúť, zdá sa nám, akoby na nás pôsobila sila, pôsobiaca v opačnom smere, než je smer pohybu vozidla
  • ak vodič prudko zabrzdí, naopak nás nejaká sila „hodí“ dopredu
  • ak vodič prechádza rýchlo zákrutou, nejaká sila nás tlačí nabok
  • keď sa v pračke začne bubon otáčať vo vysokých obrátkach, prádlo sa vyžmýka

Všetký tieto javy sú dôsledkom zákona zotrvačnosti.

Zákon zotrvačnosti (1. Newtonov pohybový zákon): Teleso v inerciálnej sústave zotrváva v pokoji alebo v rovnomernom priamočiarom pohybe, ak výslednica síl naň pôsobiacich je nulová.

Continue reading

Newtonove pohybové zákony

Isaac Newton (1643-1727)

Newtonove pohybové zákony alebo Newtonove zákony pohybu alebo Newtonove princípy sú základné zákony mechaniky, ktoré zverejnil Isaac Newton v diele Philosophiae naturalis principia mathematica v r. 1687. Tvoria axiomatický základ Newtonovej mechaniky.

Sú to tieto tri zákony:

Zobraziť článok

  1. Newtonov pohybový zákon (zákon zotrvačnosti): Teleso v inerciálnej sústave zotrváva v pokoji alebo v rovnomernom priamočiarom pohybe, ak výslednica síl, ktoré naň pôsobia je nulová.
  2. Newtonov pohybový zákon (zákon sily): Zmena hybnosti telesa za jednotku času je priamo úmerná veľkosti pôsobiacej sily.
  3. Newtonov pohybový zákon (zákon akcie a reakcie): Ak jedno teleso pôsobí na druhé teleso nejakou silou, druhé teleso pôsobí na prvé teleso rovnako veľkou silou opačného smeru.

Newtonove pohybové zákony umožňujú určiť, aký bude pohyb telesa v inerciálnej vzťažnej sústave, ak sú známe všetky sily, ktoré naň pôsobia.

Podrobnejšie v jednotlivých článkoch o pohybových zákonoch.

Zdroje:

Štatistika

Štatistika alebo matematická štatistika je odbor matematiky, ktorý skúma štatistické súbory – súbory štatistických jednotiek. Zosumarizujú sa znaky jednotlivých jednotiek a potom sa vyhodnotia charakteristické znaky celého štatistického súboru.

Štatistika úzko súvisí s pravdepodobnosťou. Niekedy môžeme preskúmať iba časť celku, vyhodnotením štatistických charakteristík tejto časti vieme s istou spoľahlivosťou určiť charakteristiky celého súboru.

Základné pojmy štatistiky

Štatistický súbor je súbor štatistických jednotiek s nejakou spoločnou vlastnosťou.

Štatistická jednotka je prvok štatistického súboru, jednotlivý objekt štatistického skúmania: osoba pri sčítaní obyvateľstva; častica pri skúmaní vlastností plynov, kvapalín; domácnosť pri výskume vybavenosti domácností…

Rozsah štatistického súboru je počet štatistických jednotiek v štatistickom súbore, n\in N.

Continue reading

Kvantifikátory

Niektoré výroky obsahujú slová každý, všetci, existuje, …

Každý a všetci neznamená to isté. Výroky:

Každý žiak triedy dostal z písomky jednotku.

Všetci žiaci triedy dostali z písomky jednotku.

sú ekvivalentné, ale napríklad výroky

Každý človek sa zmestí do tejto skrine.

Všetci ľudia sa zmestia do tejto skrine.

ekvivalentné nie sú. Z uvedeného vidno, že hovorová reč často nie je presná, máme v druhom výroku na mysli všetci súčasne alebo osobitne ako v prvom výroku?

Poznámka: Jeden zo žiakov uviedol iný príklad, kedy slovo každý nemožno nahradiť slovom všetci: Každý druhý.

Všeobecný kvantifikátor: Slovo každý(-á,-é) v matematike vyjadrujeme symbolom \forall. Tento symbol nazývame všeobecný kvantifikátor.

Existenčný kvantifikátor: Slovo existuje v matematike vyjadrujem symbolom \exists. Tento symbol nazývame existenčný kvantifikátor.

Continue reading

Graf funkcie

Aký má funkcia priebeh najlepšie uvidíme, ak nakreslíme jej graf.

Najprv nakreslíme súradnicové osy x a y a zvolíme veľkosť jednotkovej úsečky. Obvykle volíme rovnaké jednotkové úsečky pre os x aj y, ale ak funkcia prudko rastie alebo klesá, či naopak, y hodnoty budú v absolútnej hodnote výrazne menšie než hodnoty x môžeme zvoliť rôzne jednotkové úsečky.

Potom si vytvoríme tabuľku, do ktorej zapíšeme hodnoty x do prvého riadku a hodnoty y do druhého riadku. Ak by sme mali napríklad funkciu f(x)=x 2, mohla by tabuľka vyzerať takto:

x-4-3-2-1-0,500,51234
y169410,2500,2514916

Vedieme kolmice na os x v bodoch z prvého riadku a kolmice na os y v bodoch druhého riadku, kde sa tieto kolmice pretnú, označíme bod krúžkom. Keď sme vyznačili všetky body z tabuľky, prepojíme ich krivkou.

Kombinácie

Príklad 1: Trieda má 20 žiakov, koľkými spôsobmi z nich možno vytvoriť týždenníkov.
Riešenie: Prvého týždenníka môžeme vybrať z 20 možností a druhého z 19, ale u týždenníkov neurčujeme, ktorý z nich je prvý alebo druhý týždenník, takže ak ako prvého týždenníka zvolíme pôvodne druhého týždenníka a naopak, je to stále tá istá voľba, takže Súčin 20 krát 19 musíme predeliť dvoma. Celkový počet možností je teda 190.

Príklad 2: V hre loto sa žrebuje 6 čísel plus dodatkové číslo zo 49 čísel. Aká je pravdepodobnosť, že hráč vyhrá jackpot, ak podal jeden tip?

Než budeme riešiť druhý príklad, zadefinujeme, čo je to kombinácia.

Kombinácia k-tej triedy z n-prvkov bez opakovania je výber k prvkov z n-prvkovej množiny, pričom nezáleží na poradí prvkov a prvky sa neopakujú.

Continue reading